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BACKGROUND BIO AEROSOL CHARACTERIZATION 

1. Introduction 

The release of different bioaerosols is affected by various factors. Intrinsic 

mechanisms in some organisms forcibly discharge particles usually in response to an 

environmental factor. Other organisms require a mechanical disturbance for particle 

release. Seasonal climate changes affect the growth cycles of plants and subsequently 

the maturation and release cycles of pollen and spores. Diurnal effects are mainly 

influenced by local weather conditions and meteorological parameters such as 

temperature, relative humidity, wind direction and wind speed, which can influence 

the release and aerosolisation of small particles, pollen and spores. 

It has been shown (Van den Assem, 1972) that diurnal concentrations of certain 

airborne pollen groups correlated positively with temperature and negatively with 

relative humidity. Days with > 50% cloud cover generally resulted in lower pollen 

concentrations. Rainfall will scrub pollen from the air while inhibiting pollen release 

from anthers. 

Fungi may be grouped as "dry weather fungi" (those releasing spores during dry 

weather) or "wet weather spores". High relative humidity positively influences the 

release of a number of fungal spores, eg. the ascomycetes. Ascospore concentrations 

often peak as a light rain shower begins. Rain stimulates intrinsic mechanisms and 

also mechanically stimulates by a mechanism known as rain splash. Certain "dry 

weather spores" were found to increase in concentration before and after rain showers, 

(Hjelmroos, 1993). Increased concentrations of some fungal spores (Pedgley,1982; 

Leach, 1975) have been associated with low relative humidity. Light-dark cycles also 

seem to affect spore release. However, temperature, humidity and light levels do not 

appear to affect spore release in all fungi. In general, fungal spores are somewhat 

resistant to environmental stresses encountered during transport through the air. 

No active (intrinsic) release mechanisms are known for bacteria. Most likely, bacteria 

are released by mechanical agitation, including wind, disturbance by animals, human 



activities such as manipulation of compost and agricultural work. Human pathogens 

are released by coughing and sneezing. The background aerosol may be attributed to 

bacteria released from leaf surfaces by the wind and areas of exposed soil. Bacteria 

seem to be more susceptible to environmental stress than are fungal spores and pollen, 

although bacterial endospores eg. Bacillus species are quite resistant (Knudsen and 

Spurr, 1987). 

2. Fluorescence Protocol 

The protocol for bioaerosol sampling and subsequent chemical treatment of 

collected samples has been documented in the 1st Interim Report. Excitation/emission 

(EEM) spectra have been generated producing two dimensional plots of fluorescence 

intensity as a function of emission and excitation wavelength. Corrected emission 

spectra for samples and water have been integrated in order to calculate fluorescence 

cross sections (cm2/sr/particle) The fluorescence protocol used and calculation of the 

fluorescence cross section have been described in the 2n Interim Report. 

3. Microscopic Analysis of Bioaerosol Particles 

The primary disadvantage of using microscopy for routine monitoring of 

bioaerosols is that it is time and skill intensive. Computerised methods that automate 

the actual counting procedure allows fast and accurate results to be obtained. 

Microscopic analysis is transcending into the discipline of analytical imaging, in 

effect any image obtained microscopically can be digitised. The quality of the 

digitised image however is still dependent on the clarity of the primary microscopic 

image. Therefore the most advanced microscopic applications are only as good as 

basic light microscopy will allow. 

The protocol for microscopic analysis of filters has been documented in the Is Interim 

report. In addition to light microscopic analysis, filters have been examined using a 

Kontran Elektronic (KS 400) digital imaging system. This system utilises a Nikon 

Microphot-FXA video camera attached to a Nikon microscope. The digital imaging 

system has the capability of sizing particles down to an equivalent diameter of 0.4 um 



at x 400 magnification. Analysis was therefore extended to include particles of 

equivalent diameter < 1 um down to 0.4 um in size (0.4 urn < d < 1 urn). 

4. Results and Discussion 

Eight 12 hourly bioaerosol samples were collected at Mace Head over the period of 

July to December 1997. A combination of meteorological and condensation nuclei 

(CN) data were used to determine air mass sources. Data include bioaerosol samples 

from both marine (wind sector 180-300°) and continental air sources (45-135°). 

The samples were evaluated into size classes (0.4 urn < d > 51.2 urn) and the size 

distributions of the total aerosol particles and biological particles were obtained. 

These were plotted as number concentration dN/dlogD per ml versus equivalent 

diameter (urn) and are presented in Figures 1, 3, 5, 7, 9, 11, 13, 15. Additionally, the 

number concentration dN/dlogD per ml was calculated for the total number of black 

(non-biological) and transparent (non-biological) particles in each diameter interval 

and are presented in Figures 2, 4, 6, 8, 10, 12, 14, 16. 

In general, lower number concentration levels, by factors between about 2-3 were 

found for marine air as compared to continental air. However, for larger sized 

particles (diameter > 10 urn), marine air biological particles were generally dominant. 

The highest concentration of particles occurs during a continental episode on the 

10/23/97, on comparing the total aerosol size distributions for the eight sampling 

periods. A peak concentration occurs in the size intervals of diameter < 3.2 um for all 

samples. The highest concentration of particles in the size range of 3.2 urn < d < 6.4 

urn occurs during the continental periods of 09/19/97, 10/23/97 and 12/02/97. 

Similarly, on comparing the size distribution of black particles for all eight samples, 

the highest concentrations also occur during the continental sampling period 10/23/97. 

The highest concentration of particles occurs in the size ranges < 3.2 urn for all 

samples. The highest concentration of particles in the size range of 3.2 urn < d < 6.4 

urn also occurs during the continental periods of 09/19/97, 10/23/97 and 12/02/97. 



The highest concentration of biological particles at the size intervals of diameter 0.4- 

0.8 urn, 0.8-1.6 urn, and 3.2-6.4 urn occurs during the continental period 10/23/93. 

The peak biological particle concentration at the size interval of diameter 1.6-3.2 urn 

occurs during the continental period 09/19/97. 

The continental period 10/23/97 has the highest concentration of transparent particles. 

Most samples have a peak concentration occurring in the size interval of diameter 

0.8-1.6 urn with the exception of the marine period 08/15/97 which has a peak 

transparent particle concentration at the size interval 1.6-3.2 urn. 

A comparative study was carried out to compare sample 09/05/97 counted by both 

light microscopy and the digital imaging system. The results are presented in Figure 

17. Agreement between the two systems is good, particularly for the size intervals of 

diameter 1.6-3.2 urn and 6.4-12.8 um. A comparative study was also carried out on 

blank samples and the results are presented in Figure 18. Both blanks counted by light 

microscopy agree quite well with one another but blank 1 counted by light 

microscopy is comparatively lower than when counted by the digital imaging system. 

This is probably due to the fact that the digital system had a lower particle detection 

cut-off size. 

Representative emission spectra for the sampling periods are shown in Figures 19 (a) 

through to 25 (h). No emission spectra are available for the period 12/02/97 due to 

instrumentation failure. Fluorescence cross sections (cm /sr/particle) have been 

calculated for each spectrum and are presented in Table 1. 
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Figure 1. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (urn). 
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Figure 2. Black, biological and transparent particle size distribution. 
dN/dlogD per ml vs. diameter (urn). 
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Figure 3. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (urn). 
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Figure 4. Black, biological and transparent particle size distribution. 
dN/dlogD per ml vs. diameter (urn). 
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Figure 5. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (urn). 
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Figure 6. Black, biological and transparent particle size distribution. 
dN/dlogD per ml vs. diameter (urn). 
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Figure 7. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (um). 
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Figure 8. Black, biological and transparent particle size distribution. 
dN/dlogD per ml vs. diameter (urn). 
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Figure 9.   Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (urn). 
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Figure 10. Black, biological and transparent particle size distribution. 
dN/dlogD per ml vs. diameter (urn). 
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Figure 11. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (urn). 
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Figure 12.   Black, biological and transparent particle size distribution. 
dN/dlogD per ml vs. diameter (urn). 
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Figure 13. Total and biological aerosol size distribution. dN/dlogD per ml vs. diameter (um). 
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Figure 14.   Black, biological and transparent particle size distribution. 
dN/dlogD per ml vs. diameter (urn). 
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Figure 16.   Black, biological and transparent particle size distribution. 
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